viernes, 27 de septiembre de 2013

601.- Las células madre se probarán para el párkinson en dos años




Las células madre se probarán para el párkinson en dos años


Vía libre para probar en pacientes células madre contra el Párkinson

Un experimento japonés con macacos descarta el rechazo inmunológico y se ensayará en humanos en dos años

No se trata aún de aliviar los síntomas

JAVIER SAMPEDRO Madrid 26 SEP 2013 El País

La gran promesa de la emergente medicina regenerativa es convertir las células madre derivadas de un paciente en tejidos que se le puedan trasplantar para tratar su enfermedad. La idea supera hoy una prueba crucial con la demostración, por científicos japoneses, de que las neuronas dopaminérgicas –cuya destrucción causa el párkinson— derivadas de células madre pueden trasplantarse al cerebro de los primates sin apenas rechazo inmunológico. Esto despeja el camino hasta el punto de que los ensayos clínicos con pacientes humanos de párkinson empezarán en dos años, según el responsable de la investigación.

“Nosotros, y también otros laboratorios en Estados Unidos y Europa, estamos proyectando un ensayo clínico con pacientes de párkinson”, dice a EL PAÍS Jun Takahashi, investigador principal del Centro para la Investigación y Aplicación de las Células iPS, en Kioto. “Calculo que el ensayo empezará en un par de años”. Takahashi es el coordinador del trabajo presentado en Stem Cell Reports. Otro de los firmantes es su jefe en Kioto, Shinya Yamanaka, último premio Nobel de Medicina por el descubrimiento de las células iPS,

En ensayos previos la respuesta inmunitaria arruinaba el trabajo

Las células iPS (induced pluripotent stem cells, o células madre de pluripotencia inducida) son la gran promesa de la investigación biomédica. Son unas células madre tan versátiles como las embrionarias -capaces de convertirse en cualquier tejido y órgano del cuerpo-, pero que se obtienen reprogramando, o retrasando el reloj de simples células de la piel u otro tejido del paciente. No solo eluden el uso de embriones humanos, sino que además son genéticamente idénticas al paciente. Los trasplantes derivados de ellas no deberían, por tanto, generar rechazo inmunológico.

Pero las predicciones más razonables fallan a menudo en biología. En los últimos dos años, algunos experimentos con ratones habían arrojado un jarro de agua helada sobre esas expectativas. Varios tipos de trasplantes derivados de células madre iPS indujeron una fuerte respuesta inmunológica en el ratón receptor, pese a que el trasplante procedía de un ratón genéticamente idéntico a él. Por alguna razón que sigue sin estar del todo clara, las células iPS parecen generar rechazo en esos sufridos roedores de laboratorio.

Takahashi, Yamanaka y sus colegas muestran ahora que, pese a todas esas prevenciones, el proceso funciona en primates no humanos. Han utilizado ocho macacos (Macaca fascicularis) criados para este propósito, les han extraído unas pocas células de la piel o de la sangre y les han retrasado el reloj para convertirlas en células madre iPS. Esta es la receta por la que Yamanaka ganó el Nobel, basada en solo cuatro factores de transcripción, o genes que regulan a otros genes.

La falta de dopamina causa la enfermedad, y las células creadas lo solucionan
Después han usado un protocolo –a base de factores de diferenciación y otras moléculas con actividad biológica— que, paso a paso, va convirtiendo (o diferenciando, en la jerga) a las células madre iPS primero en precursores de las neuronas, luego en neuronas y por último en neuronas dopaminérgicas, esto es, productoras del neurotransmisor dopamina. La destrucción de este tipo de neuronas en una parte del cerebro (la sustancia negra), y el consiguiente déficit de dopamina en los circuitos cerebrales normalmente alimentados por ellas, es la causa directa del párkinson.

Los científicos japoneses han trasplantado esas neuronas a los mismos ocho macacos de los que habían partido, pero en dos tipos de condiciones: trasplantes autólogos (al mismo mono del que provenían las células iPS) o heterólogos (a otro mono distinto). El trabajo está diseñado cuidadosamente para examinar la cuestión crucial del rechazo. Y el resultado es un fuerte rechazo inmunológico en los trasplantes heterólogos; y uno muy débil en los trasplantes autólogos. Es la mejor noticia que podía esperar el sector –y el Nobel Yamanaka— tras el último año de depresión por los experimentos con ratones.

El experimento no aborda si las neuronas dopaminérgicas trasplantadas a los macacos pueden o no aliviar los síntomas del párkinson: los monos no tenían párkinson y no había por tanto nada que aliviar. Lo que sí es específico del párkinson es el tipo de neuronas producidas y el lugar del cerebro en el que deberían ser trasplantadas si los pacientes fueran humanos. Los autores han utilizado seis inyecciones en el cuerpo estriado izquierdo del cerebro, cada una con 800.000 neuronas.

Los animales del estudio estaban sanos, por lo que no hay evidencia médica
Takahashi considera que sus resultados ofrecen “una lógica para empezar a probar los trasplantes autólogos en situaciones clínicas, al menos con células neuronales”. También piensa que el trasplante de neuronas derivadas de células iPS al mismo paciente del que fueron obtenidas, o incluso a otro paciente que case con él inmunológicamente –como se hace ahora con los trasplantes de médula— puede ser posible sin necesidad de utilizar fármacos inmunosupresores. La respuesta inmunológica no es nula, pero sí lo bastante baja para que las células trasplantadas sobrevivan a largo plazo.

Los científicos esperan que las células madre sirvan también algún día para tratar la diabetes, la artritis, las dolencias cardiacas, las lesiones medulares y muchas otras enfermedades hoy incurables. El párkinson, sin embargo, parece ir en cabeza por el momento.


Un “mensaje importante”

JAIME PRATS, VALENCIA

“El mensaje que lanza el trabajo es muy importante”, reflexiona María Abad, del Centro Nacional de Investigaciones Oncológicas (CNIO). Abad recuerda experimentos de hace un par de años en los que se trasplantaron células madre iPS (como las embrionarias) en ratones. Entonces, la respuesta inmunológica fue “muy fuerte”. “En un organismo adulto no hay células embrionarias, las rechaza porque no las reconoce como propias”.
Sin embargo, cuando las iPS se diferencian en células de la piel, de médula ósea, hepáticas, endoteliales [las que recubren los vasos sanguíneos] o neuronales antes de ser trasferidas al ratón “la respuesta inmune es muy inferior”.
El ensayo en primates del grupo de Kioto confirma los bajos índices de rechazo también en modelos superiores y supone una prueba de concepto que ya apuntaron investigadores estadounidenses en marzo, apunta Abad. “Pero este artículo es aún más completo porque se ha comprobado cómo responde el cuerpo en un trasplante autólogo [a partir de neuronas obtenidas de iPS del propio receptor] comparado con el heterólogo [neuronas de iPS ajenas]; y muestra cómo la respuesta es mucho mejor en el primer caso”.
“Es un trabajo relevante y necesario de cara a los ensayos clínicos en humanos”, añade Abad, primera autora del estudio que hace dos semanas demostró, en ratones, que es posible convertir células adultas en células madre iPS en el propio organismo.



6 cosas que dependen de la dopamina

Descubierta hace apenas medio siglo por los químicos suecos Arvid Carlsson y Nils-Åke Hillarp, la dopamina no sólo ha resultado ser el neurotransmisor responsable de las sensaciones placenteras. También está involucrada en la coordinación de los movimientos musculares, en la toma de decisiones y en la regulación del aprendizaje y la memoria. Sin ella no sentiríamos curiosidad ni motivación. 

Personalidad. ¿Te consideras tímido? ¿Extrovertido? ¿Inseguro? ¿Valiente? De acuerdo con un estudio realizado por investigadores de la Clínica Universitaria Charité de Berlín y publicado en Nature Neuroscience en 2008, la cantidad de dopamina que contiene la amígdala cerebral de una persona podría definir si es tranquila y confiada en sí misma (baja concentración) o si es miedosa y con tendencia a sufrir estrés (alta concentración).

Sobrepeso. No a todos nos produce el mismo placer saborear un pastel de chocolate. Las personas obesas tienen menos receptores de dopamina en su cerebro y, por lo tanto, necesitan comer más cantidad para compensar ese déficit y sentir la misma satisfacción que el común de los mortales, según se desprende de un estudio publicado hace poco en la revista Science. 

Pasión por el riesgo. Que en la adolescencia se corren más riesgos que en otras etapas de la vida es un hecho. Lo que no sabíamos hasta hace poco era que este comportamiento se puede atribuir a un aumento de la cantidad de dopamina en ciertas zonas del cerebro de los adolescentes que les hace equivocarse en sus expectativas y predecir resultados excesivamente "positivos" de sus acciones. 

Cuestión de estatus. Usando técnicas de neuroimagen, los científicos han demostrado que cuanto más alto es el estatus social de una persona mayor es el número de receptores D2 de dopamina que hay en su cerebro y, por lo tanto, más motivada y satisfecha se siente.

Creatividad. Según un artículo publicado recientemente en PLoS ONE, las personas muy creativas tienen menos densidad de receptores D2 de dopamina en el tálamo, una zona del cerebro encargada de filtrar los estímulos que llegan a la corteza cerebral. Esto impide que se filtren algunas señales y aumenta el flujo de información hacia el cerebro, lo que permitiría establecer conexiones entre conceptos que a otros se les escapan. 

Memoria. La dopamina también controla la duración de la memoria, es decir, si una información se conserva durante sólo 10 o 12 horas en el cerebro y desaparece, o si perdura por más tiempo. ?Si creemos que lo que aprendemos es importante, la dopamina activa al hipocampo para que se archive?, explica Jorge Medina, investigador de la Facultad de Medicina de la Universidad de Buenos Aires y coautor del descubrimiento. "Si por el contrario lo que aprendemos no nos satisface, el recuerdo se diluye".

 http://www.muyinteresante.es/salud/





Dopamina

Dopamine-3d-CPK.png


La dopamina (C6H3(OH)2-CH2-CH2-NH2) es un neurotransmisor producido en una amplia variedad de animales, incluidos tanto vertebrados como invertebrados. Según su estructura química, la dopamina es una feniletilamina, una catecolamina que cumple funciones de neurotransmisor en el sistema nervioso central.
En el sistema nervioso, la dopamina cumple funciones de neurotransmisor, activando los cinco tipos de receptores celulares de dopamina – D1 (relacionado con un efecto activador), D2 (relacionado con un efecto inhibidor), D3, D4 y D5, y sus variantes. La dopamina se produce en muchas partes del sistema nervioso, especialmente en la sustancia negra. La dopamina es también una neurohormona liberada por el hipotálamo. Su función principal en éste, es inhibir la liberación de prolactina del lóbulo anterior de la hipófisis.
Como fármaco, actúa como simpaticomimético (emulando la acción del sistema nervioso simpático) promoviendo el incremento de la frecuencia cardíaca y la presión arterial, a su vez, puede producir efectos deletéreos como taquicardia o hipertensión arterial. Sin embargo, a causa de que la dopamina no puede atravesar la barrera hematoencefálica, su administración como droga no afecta directamente el sistema nervioso central.
La disminución en la cantidad de dopamina en el cerebro en pacientes con enfermedades como la enfermedad de Parkinson y la distonía en respuesta a Dopa, L-Dopa (levodopa), que es el precursor de la dopamina, puede deberse a que este último cruza la barrera hematoencefálica; en la enfermedad de Parkinson la destrucción de las neuronas dopaminérgicas de la sustancia negra y que proyectan hacia los ganglios basales conlleva lesiones tisulares que terminan en la pérdida del control de los movimientos a cargo del sistema nervioso.

La dopamina fue sintetizada artificialmente por primera vez en 1910 por George Barger y James Ewens en los Laboratorios Wellcome en Londres, Inglaterra. Fue llamada Dopamina porque es una monoamina, y su precursor sintético es la 3,4-dihidroxifenilalanina (L-Dopa). En 1952, Arvid Carlsson y Nils-Åke Hillarp, del Laboratorio de Farmacología Química del Instituto Nacional del Corazón en Suecia, pusieron de manifiesto su importante papel como neurotransmisor. Éste y otros logros en transducción de señales en el sistema nervioso le valieron a Carlsson el Premio Nobel en Fisiología o Medicina en 2000.

Bioquímica

Nombre y familia

La dopamina tiene la fórmula química C6H3(OH)2-CH2-CH2-NH2. Su nombre químico es "4-(2-aminoetil)benceno-1,2-diol" y su abreviatura es “DA”.
Como miembro de la familia de las catecolaminas, la dopamina es un precursor de la norepinefrina (noradrenalina), luego epinefrina (adrenalina) en las vías de biosíntesis de estos neurotransmisores.
Biosíntesis[editar · editar código]
La dopamina se biosintetiza en el cuerpo (principalmente en el tejido nervioso de la médula de las glándulas suprarrenales) primero por la hidroxilación de los aminoácidos L-tirosina a L-Dopa mediante la enzima tirosina 3-monooxigenasa, también conocida como tirosina hidroxilasa, y después por la descarboxilación de la L-DOPA mediante la enzima dopa-descarboxilasa.4 En algunas neuronas, la dopamina es transformada en norepinefrina por la dopamina beta-hidroxilasa.
En las neuronas, después de la síntesis la dopamina se empaqueta en vesículas, que se liberan en la sinapsis en respuesta a un impulso eléctrico presináptico.


Biosíntesis de la dopamina

Inactivación y degradación
La dopamina es inactivada por el reingreso mediante el transportador de dopamina, luego es clivada enzimáticamente por la catecol-O-metil transferasa (COMT) y la monoamino oxidasa (MAO). La dopamina que no es clivada por las enzimas es reempacada en vesículas para su reutilización.
La dopamina también es capaz de hacer difusión simple en la sinapsis, y de regular la presión sanguínea.

Funciones en el sistema nervioso

La dopamina tiene muchas funciones en el cerebro, incluyendo papeles importantes en el comportamiento y la cognición, la actividad motora, la motivación y la recompensa, la regulación de la producción de leche, el sueño, el humor, la atención, y el aprendizaje.
Las neuronas dopaminérgicas (es decir, las neuronas cuyo neurotransmisor primario es la dopamina) están presentes mayoritariamente en el área tegmental ventral (VTA) del cerebro-medio, la parte compacta de la sustancia negra, y el núcleo arcuato del hipotálamo.
Las respuestas físicas de las neuronas dopaminérgicas son observadas cuando se presenta una recompensa inesperada. Estas respuestas se trasladan al inicio de un estímulo condicionado después de apareamientos repetidos con la recompensa.
Por otro lado, las neuronas de dopamina son deprimidas cuando la recompensa esperada se omite. Así, las neuronas de dopamina parecen codificar la predicción del error para resultados provechosos. En la naturaleza, aprendemos a repetir comportamientos que conducen a maximizar recompensas. La dopamina por lo tanto, como se cree, proporciona una señal instructiva a las partes del cerebro responsable de adquirir el nuevo comportamiento. La diferencia temporal del aprendizaje proporciona un modelo computacional describiendo cómo el error de predicción de neuronas de dopamina se usa como una señal instructiva.
En insectos, un sistema de recompensa similar existe, usando octopamina, un químico similar a dopamina.

Anatomía

Las neuronas dopaminérgicas forman un sistema neurotransmisor que se origina en la parte compacta de la sustancia negra, el área tegmental ventral (VTA) y el hipotálamo. Sus axones son proyectados a través de varias áreas del cerebro mediante estas vías principales:
Vía mesocortical
Vía mesolímbica
Vía nigrostriatal
Vía tuberoinfundibular
Esta inervación explica muchos de los efectos de activar este sistema dopaminérgico. Por ejemplo, la vía mesolímbica conecta el VTA y el núcleo accumbens, ambos son centrales al sistema de recompensa cerebral.6
Movimiento[editar · editar código]
Mediante los receptores de dopamina D1, D2, D3, D4 y D5, la dopamina reduce la influencia de la vía indirecta, e incrementa las acciones de la vía directa involucrando los ganglios basales. La biosíntesis insuficiente de dopamina en las neuronas dopaminérgicas pueden causar la Enfermedad de Parkinson, en la cual una persona pierde la habilidad para ejecutar movimientos finos y controlados. La activación fásica dopaminérgica parece ser crucial con respecto a una duradera codificación interna de habilidades motoras (Beck, 2005).

Cognición y corteza frontal

En los lóbulos frontales, la dopamina controla el flujo de información desde otras áreas del cerebro. Los desórdenes de dopamina en esta región del cerebro pueden causar un declinamiento en las funciones neurocognitivas, especialmente la memoria, atención, y resolución de problemas. Las concentraciones reducidas de dopamina en la corteza prefrontal se piensa contribuyen al trastorno por déficit de atención con hiperactividad. Por el contrario, la medicación anti-psicótica actúa como antagonista de la dopamina y se usa en el tratamiento de los síntomas positivos en esquizofrenia.
Regulación de la secreción de prolactina[editar · editar código]
La dopamina es el principal regulador neuroendocrino de la secreción de prolactina desde la hipófisis anterior. La dopamina producida por las neuronas en el núcleo arcuato del hipotálamo se secreta a los vasos sanguíneos hipotálamo-hipofisiarios en la eminencia media, la cual supla la hipófisis. Las células lactotropas que producen prolactina, en ausencia de dopamina, secretan prolactina continuamente; la dopamina inhibe su secreción. Así, en el contexto de la regulación de la secreción de prolactina, la dopamina es ocasionalmente llamada Factor Inhibidor de Prolactina (PIH), o prolactostatina. La prolactina también parece inhibir la liberación de dopamina, como un efecto posterior al orgasmo, y es principalmente responsable del Período Refractario.

Motivación y placer

Refuerzo
La dopamina es comúnmente asociada con el sistema del placer del cerebro, suministrando los sentimientos de gozo y refuerzo para motivar una persona proactivamente para realizar ciertas actividades. La dopamina se libera desde neuronas situadas en el área tegmental ventral (ATV) hasta estructuras como el núcleo accumbens, la amígdala, el área septal lateral, el núcleo olfatorio anterior, el tubérculo olfatorio y el neocórtex mediante las proyecciones que tiene el ATV sobre estas estructuras. Participa en experiencias naturalmente recompensantes tales como la alimentación, el sexo,7 8 algunas drogas, y los estímulos neutrales que se pueden asociar con estos. Esta teoría es frecuentemente discutida en términos de drogas tales como la cocaína, la nicotina, y las anfetaminas, las cuales parecen llevar directa o indirectamente al incremento de dopamina en esas áreas, y en relación a las teorías neurobiológicas de la adicción química, argumentando que esas vías dopaminérgicas son alteradas patológicamente en las personas adictas. Sin embargo, según estudios recientes existe una relación en la alteración en los niveles de dopamina producidas por el tabaco y un decremento del riesgo de contraer Parkinson, pero los mecanismos de tal relación aún no se encuentran determinados.

Inhibición de la recaptación, expulsión

Sin embargo, cocaína y anfetamina influyen sobre distintos mecanismos. La cocaína es un bloqueador (del transportador de la dopamina) que inhibe competitivamente la recaptación de la dopamina para aumentar el periodo de vida de la misma y producir una sobreabundancia de dopamina (un aumento de hasta el 150%) dentro de los parámetros de los neurotransmisores de la dopamina.
Al igual que la cocaína, las anfetaminas incrementan la concentración de dopamina en el espacio [sináptico], pero por medio de un mecanismo distinto. Las anfetaminas tienen una estructura similar a la dopamina y pueden por tanto penetrar en el botón terminal de la neurona presináptica por medio de sus transportadores de dopamina, así como difundiéndose a través de la [membrana neural] directamente. Al entrar en la neurona presináptica, las anfetaminas fuerzan a las moléculas de dopamina a salir de su vesícula de almacenamiento y las expulsan al espacio sináptico haciendo funcionar a la inversa a los transportadores de dopamina.
El papel de la dopamina en la experiencia del placer ha sido cuestionado por varios investigadores. Se ha argumentado que la dopamina está más asociada al deseo anticipatorio y la motivación (comúnmente denominados "querer") por oposición al placer consumatorio real (normalmente denominado "gustar")
La dopamina se libera al encuentro de estímulos desagradables o aversivos, y así motiva hacia el placer de evitar o eliminar los estímulos desagradables.

Estudios en animales

Lo que se sabe sobre la dopamina en cuanto a su papel en la motivación, el deseo y el placer, se obtuvo de estudios realizados en animales. En uno de estos estudios, a las ratas se les extrajo la dopamina hasta en un 99% en el nucleus accumbens y neostriatum usando -hidroxidopamina. --> Con esta gran reducción de dopamina, las ratas ya no pudieron alimentarse por su propia voluntad. Los investigadores las alimentaron de manera forzada y notaron las expresiones faciales que indicaban si les agradaba o no. Concluyeron que la reducción de dopamina no disminuye el placer de consumo, sólo el deseo de comer. En otro estudio, ratones con la dopamina incrementada mostraron un mayor deseo, pero no gusto por recompensas agradables. -->
Drogas reductoras de dopamina en seres humanos[editar · editar código]
En humanos, sin embargo, las drogas que reducen la actividad de la dopamina (neurolepticos, e.g., algunos antipsicóticos) han mostrado también reducir la motivación, así como provocar anhedonia (incapacidad para experimentar placer). Contrariamente los agonistas de D2/D3 pramipexole y ropinirol tienen propiedades anti-anhedónicas, lo que ha sido estimado midiendo a través de la Escala del Placer de Snaith-Hamilton. (La Escala del Placer de Snaith-Hamilton, fue introducida en Inglaterra en 1995 para auto-evaluar la anhedonia en pacientes psiquiátricos).

Transmisión cannabinoide y opioide

Los Opioides y cannabinoides, en lugar de transmitir la dopamina pueden modular el placer de los alimentos y la palatabilidad (sabor). Esto podría explicar porqué en los animales el "sabor" de la comida es independiente de la concentración de dopamina en el cerebro. Otros placeres, sin embargo, pueden estar mas asociados con la dopamina. Un estudio informó que tanto la anticipación como la consumación de la conducta sexual (machos) fueron interrumpidas por receptores antagonistas de DA. La libido puede ser incrementada por drogas que afectan a la dopamina, pero no por otras que afecten a los péptidos opioides o de otros neurotransmisores.

Socialización

La sociabilidad se encuentra también muy ligada a la neurotransmisión de dopamina. Una baja captabilidad de dopamina es frecuentemente encontrada en personas con ansiedad social. Características comunes a la esquizofrenia negativo (apatía, anhedonia) son importantes en relación al estado hipodopaminérgico en ciertas áreas del cerebro. En instancias de desorden bipolar, sujetos maníacos pueden ser hipersociales, al igual que también pueden ser hipersexuales. Esto también se da por acción de un incremento de dopamina, provocando manía que puede ser tratada con antipsicóticos bloqueadores de dopamina.

Saliencia

La dopamina también puede tener un papel en la saliencia (perceptibilidad) de los estímulos potencialmente importantes, tales como las fuentes de recompensa o de peligro. Esta hipótesis sostiene que la dopamina ayuda a la toma de decisiones al influir en la prioridad, o el nivel de deseo, de estos estímulos a la persona en cuestión.

Desórdenes del comportamiento

El bloqueo de los receptores cerebrales de dopamina aumenta (en vez de disminuir) el consumo de drogas. Dado que el bloqueo de dopamina disminuye el deseo, el aumento en el consumo de drogas se podría ver no como un deseo químico sino como un profundo deseo psicológico de "sentir algo".
Déficit en los niveles de dopamina se han relacionado con el déficit atencional con hiperactividad (DAH) y los medicamentos estimulantes usados exitosamente para tratar el aumento desmedido en los niveles de neurotransmisores de dopamina llevan a la disminución de los síntomas.
Inhibición latente y creatividad[editar · editar código]
La Dopamina de los circuitos mesolímbicos incrementa la actividad general y la de los centros regulatorios de la conducta, disminuyendo la inhibición latente. Estos tres efectos dan como resultado el incremento de la creatividad en la generación de ideas. Esto ha llevado al modelo trifactorial de la creatividad que incluye el (los) lóbulo (s) frontal (es), el (los) lóbulo(s)temporal (es) y la dopamina mesolímbica. 

Relación con la psicosis

La dopamina anormalmente alta se asocia con psicosis y esquizofrenia. Las neuronas de dopamina en la vía mesolímbica están particularmente asociadas con estos síntomas. Las pruebas vienen parcialmente del descubrimiento de una clase de drogas llamadas fenotiacinas (que bloquean los receptores de dopamina D2) que pueden reducir los síntomas psicóticos, y parcialmente del descubrimiento de drogas como la anfetamina y cocaína (que son conocidas por incrementar de manera importante los receptores de dopamina) pueden causar psicosis. Por esto, la mayoría de los modernos fármacos antipsicóticos, por ejemplo, Risperidona, están diseñados para bloquear la función de la dopamina en diversos grados.

Uso terapéutico

Levodopa es un precursor de dopamina usado de varias maneras en el tratamiento de la Enfermedad de Parkinson. Es co-administrada típicamente con un inhibidor de la decarboxilación periférica (DDC, dopa decarboxilasa), incluyendo la carbidopa o benserazida. Los inhibidores de la ruta metabólica alternativa de la dopamina por la catecol-O-metil transferasa también son usados. Estos incluyen entacapona y tolcapona.
La dopamina es también usada como una droga inotrópica en pacientes con shock para incrementar el gasto cardíaco y la presión sanguínea

La dopamina y la oxidación de la fruta

Las polifenol oxidasas (PPOs) son una familia de enzimas responsables de la oxidación de frutas frescas y vegetales al ser cortados o golpeados. Estas enzimas usan oxígeno molecular(O2) para oxidar varios difenoles a su correspondiente quinonas. El sustrato natural para los PPOs en la banana es la dopamina.El producto de su oxidación, la quinona dopamina se oxida espontáneamente en presencia de otras quinonas.Las quinonas entonces se polimerizan y condensan con amino ácido para formar pigmentos marrones denominados melaninas. Se cree que estas quinonas y melaninas derivadas de la dopamina podrían ayudar a proteger a las frutas y vegetales dañados de bacterias y hongos.

Otros datos

Este neurotransmisor cerebral se relaciona con las funciones motrices, las emociones y los sentimientos de placer.
Controla el sistema retiniano y los sistemas encargados de activar los centros responsables de la actividad motora, así como los de regular ciertas secreciones hormonales, de mandar información a células del mesoencéfalo que conectan con el cortex frontal y con distintas estructuras del sistema límbico. Estos dos últimos sistemas tienen una función muy importante en la vida emocional de las personas y su mal funcionamiento es característico en algunos tipos de psicosis.
La dopamina aumenta la presión arterial. A dosis bajas aumenta el filtrado glomerular y la excreción de sodio. Es precursor de la adrenalina y de la noradrenalina, y además es compuesto intermediario en el metabolismo de las tiroxinas.
Inhibe la producción de prolactina en la lactancia. La succión del pezón desencadena un aumento rápido de producción de prolactina, sin embargo, al final de la lactancia, con las separaciones entre las tomas y la secreción de dopamina se provoca la interrupción de la leche.
La dopamina, en personas con enfermedad de Parkinson, aparece al 50 % de los niveles normales y produce rigidez muscular y falta de coordinación motora. En esta enfermedad, las neuronas productoras de dopamina van degenerando lentamente, y aunque se desconocen las causas de esta degeneración neuronal, algunos casos parecen estar muy relacionados con la toxicidad de ciertos compuestos químicos, como los pesticidas. Por el contrario, la esquizofrenia se asocia con un aumento excesivo en los niveles de dicho neurotransmisor.




No hay comentarios:

Publicar un comentario